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A numerical calculation has been carried out to evaluate the 3 x 3  cross-section matrix involved in the 
electron impact excitation of the ground state of H atom to the 2s and 2p  levels. The method of solution 
is that of atomic eigenstates expansion. I n  this paper, instead of the iterative technique used by other 
authors, the definite integral terms in the coupled radial differential equations are eliminated through some 
linear transformation of the radial functions, thus avoiding iteration of these equations. The accuracy of 
the numerical integration is tested by satisfying tht equation of reciprocity and the equation of continuity 
of currents with an error-to-value ratio less than 1 per loo0 on the average; and the maximum of this ratio, 
except for a few cases, has been kept below 5'jL. The results are in agreement with the results of an iterative 
technique. To evaluate the effect of the long range and the centrifugal potential, a simple perturbation 
theory is developed. The six cross sections 1s ---t 2s, 1s -i 2p, 1s - Is, 2s -+ 25, 2s ---t 2 p ,  and 2p  -+ Z p  are 
tabulated elsewhere, only the 2s -+ 29 and the 2 p  -+ 2p cross sections are reporred here. The 2 p  + 2p cross 
section requires the solution of the sets of differential equations with different parities. Assuming the validity 
of the eigenstates expansion, i t  is found by comparison with the eigenstates expansion calculation that the 
Born approximation, despite its simplicity, gives meaningful results for low and close-to-the-threshold 
energies of the bombarding electrons. The effect of the exchange potentials on the cross sections is also 
inve&gated. Finally, an interesting structure of the Is + 2s excitation cross section above threshold is found. 

I. INTRODUCTION 
ALCULATION of the excitation cross sections in C atomic hydrogen by electron impact corresponds 

to the solution of the problem of three interacting 
bodies: one proton and two electrons. By taking the 
position of the proton as the center of mass, the problem 
will reduce to the task of finding the nonseparable wave 
function of the system of the two electrons with an 
attractive center of force. Such solution has not been 
found. However, if this wave function is expanded in 
terms of the eigenstates of the hydrogen atom, the 

coefficients of the expansion, which are functions of the 
position vector of the free electron, can be found through 
numerical integration. When an iniinite number of terms 
are included in the expansion, the solution to the prob- 
lem is exact. Furthermore, the expansion has the 
advantage that the asymptotic form of its coefficients 
are automatically the asymptotic form of the free-elec- 
tron wave function scattered from different atomic 
states, which are simply related to the excitation cross 
sections. 

In this paper atomic states Is, 2s, 2p  are included in 
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ere E is the total energy of the system and r12 is the 
tance between the two electrons. We expand the total 

formulated tGe ' efgenstate expansion technique in 
general, and have tabulated the coefficients of the 
integrodifferential equations for s, p ,  and d atomic 
electrons. Burke, Smith, and %hey; using the equations 
of Percival and Seaton for the three states Is, 2s, 2p, 
have integrated the resulting integrodifferential equa- 
tions. In  this paper we solve the same differential 
equations by a linear transformation of the differential 
equations in order to avoid the need for iteration of 
these equations5 

The numerical integrations were carried out for all 
partial waves, while in higher partial waves the Born 
approximation were used. The transition between the 
eigenstates expansion calculation and the Born approxi- 
mation takes place when the results of the two calcula- 
tions agree closely. 

11. FORMULATION 

A. Derivation of the Differential Equations 

Since spin-orbit interaction of the electrons are 
neglected, the total orbital angular momentum L and 
the total spin angular momentum S are separately 
conserved. We can then divide the interactions into 
antiparallel spin states, where S=O, and parallel spin 
states, where S= 1. In this way we deal with spatial 
wave functions of the electrons only, and for brevity 
we call the orbital angular momentum the angzrlar 
momentum. 

Neglecting the motion of the proton and taking its 
position as the origin of the coordinate system, the 
Schrodinger equation for the system can be written 

[B- El+ (r1,4 = 0 , (2.1) 

where rl and r2 are the position vectors of the bound 
and the free electrons and, in atomic units, 

R. Marriott, I'roc. Phys. SOC. (London) 7?, 121 (1958). 
R. Smith. Phvs. Rev. 120. 845 (19601. 

. I  

3 1 .  C. Percivafand M. J. Seaton, Proc. Cambridge Phil. SOC. 
53, 654 (1957). 

4 (a) P. G. Burke and K. Smith, Rev. Mod. Phys. 34,458 (1962). 
(b) P. G. Burke, H. 11. Schey, and K. Smith, Phys. Rev. 129, 1258 
11963). 
\ -  --,- 

6 Similar calculation has been carried out by R. Damburg and 
R. Peterkop, Proc. Phys. SOC. (London) 80, 563 and 1073 (1962). 
Here the L=O, 1 cases have been solved hy noniterative, and all 
other cases by iterative, methods. 

wave function $(rl,rZ) in terms of the eigenfunctions of 
I d  ~ &,tat,$ .\1 angular momentum L, 

Since tdese eigenfunctions are orthogonal, substitution 
of Q. (2.3) in Eq. (2.1) gives 

[H-EI+h,rZ)=O. (2.4) 

$L(r1,r2) = (1+W1J C C Cmlm2~z112L~(nlZlml,rl) 

Xr~-'u(K,,l2,r2) yl,,,(Q~) , (2.5) 

dnlllnz1,rl) = rl-lI'(dl,rJ l'liml(%). (2.6) 

The explicit form of $L(r1,r2) is given by 

nililz numz 

Here p(nlllmlrl) is the hydrogen atom wave function 
with radial part rl-lP(nlZ1,rl) and angular part Yllml (Q1) 

and quantum numbers nllml; r2-1u(K,J2,r2) is the radial 
part, and Y ~ ~ ~ ~ ( f 2 2 )  is the angular part of the free- 
electron wave function with quantum numbers kn$2m2. 
The relation between the wave number K , ,  and nl is 
given by 

k,,'=2 E+- . 
2 2  

Finally the constants C , l m Z ~ z * z Z L =  (11Z2mlmzl LM) ,  with 
M representing the total magnetic quantum number, 
are vector coupling coefficients which make the linear 
combination of the products of the one-electron wave 
functions in Eq. (2.5) the eigenfunction of the total 
angular momentum L. In  the problem under considera- 
tion u 1 =  1, 2 ;  Zl=O, I ;  I?= IL-Z1[, . . ., IL+Z11 ; 
ml=-ll, ..., l I  and m2=-Z2, ..., 12. To make the 
total wave function symmetric for antiparallel spins or 
antisymmetric for parallel spins, the operator P I 2  inter- 
changes rl and r2 while P is +1 for the first case and is 
- 1 for the second. 

By taking L perpendicular to the z axis M=O and 
m2= -ml, Eq. (2.5) can then be written 

$L(r1,r2) = (1+@Pl2) C C ~ l - ~ l ~ z 1 z 2 r ~ ~ ~ ~ ~ ~ ~ m ~ , ~ ~ ~  
nili lz mi  

X ~ Z - ~ U ( K . , Z Z , ~ ~ ) Y Z , , , ( ~ Z ) .  (2.8) 

In order that +L(rl,r2) closely approximates the exact 
wave function, we minimize the expectation value of the 
energy operator with respect to the radial parts of the 
free-electron wave functions 

6 ~~*(rl,r~)[H-E]+1,(rl,r2)d~rld~r2= 0. (2.9) 

Percival and Seaton3 have evaluated Eq. (2.9) and 
have derived the differential equations for the scattering 

s 
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of free electrons by atomic s, p ,  and d electrons in 
hydrogen atom, using the theory of the irreducible 
tensor operators in order to evaluate the interaction 
terms between the two electrons. The result is a set of 
coupled second-order difTerentia1 equations which are 
functions of the radial coordinate of the free electron. 
We have evaluated Eq. (2.9) independently using 
ordinary methods, and have verified the results of 
Percival and Seaton.6 

When the integrals representing the direct potentials 
in the coupled set of differential equations are evaluated 
and some change is made in the limits of the exchange 
potential integrals, these equations can be written in the 
following matrix form: 

d2 ln ( zn+ l ) ]u (k ,J~ , r )=  2Vu(kJ, ,r) .  (2.10) [ G + k n 2 -  
1 2  

The components of u are the radial functions of the free 
electron, and V is the potential matrix. u has four 
components when L-11-12 is even and one component 
when this is odd. Similarly V is a 4 x 4  matrix when 
L-11-12 is even and it has one component when this 
quantity is odd. The case L=O is an exception. Here 
when L-11-19 is even n has three components and V is 
a 3 x 3  matrix, and the case L-11-12 odd does not occur. 
V can be written as the sum of three matrices, 

P = l  J a  
where Dij is the direct potential and Eij is the exchange 
potential and both are functions of r .  The matrix Eij 
contains in addition integrals with respect to r ,  and for 
the purpose of numerical integration it can be written 
as the sum of two matrices. The explicit forms of D,j, 
F . .  C J i  g..’ 13 1 and hi/  are given in Appendix I. The value of 
u is 2 for i = j = 3  and i = j = 4 ,  and is 1 for all other 
values of i and j .  It is understood that for the exchange 
terms the components of u on the right-hand side of 
Eq. (2.10) are inside the integrals of the exchange terms. 

Below we discuss the general solution of Eq. (2.10) 
when it has four components. 

B. Decomposition of the Differential Equations 

If it were not for the definite integrals appearing in 
the potential matrix V, the set of the four coupled 
differential equations (2.10) could be integrated by any 
standard technique. The presence of these unknown 
constants whose integrand involve the unknown func- 
tions makes i t  necessary to solve these equations by 
iteration or by transformation of u into other vectors, 
whose differential equations do not contain definite 

OK. Omidvar, Technical Note G419, Goddard Space Flight 
Center, National Aeronautics and Space Administration, 1963 
(unpublished). 

integrals. Since the terms containing definite integrals 
are small as compared with the direct potentials, the 
iteration method can be used by assuming that the 
values of these integrals are zero. The differential equa- 
tions are then integrated, the values of the definite 
integrals that are subsequently obtained are substituted 
in the differential equations, and the integration is 
repeated. The process is repeated until sufficiently con- 
sistent values of these integrals are obtained. This 
method is useful if the convergences of the constants 
are fast enough and the cross section is not very sensitive 
to the values of these constants. 

In the second method, the transformation of u fixes 
the values of the constants and thus avoids iteration, 
whereby the computation is reduced considerably. We 
have used the second method and the description of the 
method will be given here.’J 

By making use of Eq. ( 2 . 1 1 ) ,  Eq. (2.10) can be 
written 

[ G + k i 2 - p  a 2  l i ( J i + 1 ) l u {  

I2 

4 0 

= 2  1 [(Dtj+Fij)uj+ C gtjpCijp] (2.12)  
J= 1 p-1  

where 

C, . - lm hSjfi(r)uJ(r)dr. (2.13) 

We introduce the functions vi and uik2 that are solutions 
of the following differential equations: 

.\ 

2 [Dij+Ftj]vj, (2.14) 
j= 1 

Then ui is given by the following expression: 

Equation (2.16) can be verified by multiplying Eq. 
(2.15) by Ckf ,  summing over k ,  1 and v, and adding to 
F,q. (2.14), whereupon Eq. ( 2 . 1 2 )  results. Substitution 

6. Omidvar, Research Report No. Cx-37, p. 22, Inst. Math. 
Sci., New York University, 1959 (unpublished). 

* See Ref. 1. This description differs from the description of Ref. 
7 and the present paper. In  Ref. 1, o i  in Eq. (2.16) is set to zero; 
this makes B,jr=O. Eq. (2.17) then reduces to a set of homoge- 
neous equations whose determinant must be zero. Since the ampli- 
tude of any of the 4 components of u can be left arbitrary, one 
of the C k f  is set to 1 and the rest of the constants are found 
subsequently. 
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of Eq. (2.16) in Eq. (2.13) gives 

4 4 s  c 1 [ 6 ( i j p , k h ) - A i j c k z ] ~ k l v = B ~ ~ '  *J 1 

k=l  1=1 v = l  

i, j = 1 ,  2, 3, 4 ;  

p = l ,  2 for i = j = 3  and i = j = 4 ;  (2.17) 

p =  1 otherwise, 

where AijPkl and B$ are defined by 

A I1 .&E= (0 h,j%jkEdr, 
J o  

,-=a 
(2.18) 

B$= j o  hi,*&. 

The numerical integration is carried out by integrat- 
ing Eqs. (2.14) and (2.15) by any standard method, 
calculating A;,Mkz and Bijr by Eqs. (2.18) and, finally, 
solving the system of 18 algebraic equations given by 
Eqs. (2.17) to find Ckf .  With the known values of 
these constants the integration of Eqs. (2.12) is 
straightforward. 

The determinant of Eqs. (2.17) becomes singular for 
L=O and 1. To remove the singularity, some of the 
C k f  are chosen arbitrarily, and the rest of the Ckl' are 
found in terms of the chosen ones (cf. Appendix 11). 

III. NUMERICAL INTEGRATION 

A. Solution at the Origin 

Equation (2.10) or its equivalent, Eqs. (2.14) and 
(2.15), constitute a set of four coupled, second order, 
differential equations. Three components of u can be 
eliminated from these equations, resulting in an 8th 
order differential equation for the remaining component. 
Therefore there are eight sets of solutions to Eq. (2.10). 
However, only half of these solutions are regular a t  the 
origin. Each of the four regular solutions corresponds to 
a dehi te  vector u. The four vectors can properly be 
represented by a 4x4 matrix uij, i, j =  1 ,2 ,3 ,4 ,  where i 
corresponds to a particular component and j corre- 
sponds to a particular solution of u. In order that the 
four solutions of u be independent of each other, we 
must have 

4 c C;Uij#O , i= 1, 2, 3, 4 ,  (3.1) 
j -  1 

where Cj are some constants. A necessary condition for 
this to be satisfied is that the determinant of Eq. (3.1) 
be nonzero, 

Iluijll#O. (3.2) 

It is not difficult to see that this also is a suflicient condi- 
tion. At the origin the solution Uij can be expressed as 

power series in r, 
0 

(3.3) .. = C aijvrai+l 
*J 

V - 0  

where ai/ are the coefficients of the expansion and si are 
given integers for each component of u and are tixed by 
the behavior of Eq. (2.10) a t  the origin. Equation (3.2) 
is satisfied near the origin if 

llaijoll # O .  (3.4) 

By choosing suitable values of aiio, subject to the re- 
striction (3.4), four independent solutions are obtained. 

B. Solution at Larger r 
With the solution found a t  the origin, the solution of 

Eq. (2.10) or its equivalent, Eqs. (2.14) and (2.15), can 
be extended from origin through numerical integration 
to any desired value of 7. In  order to obtain the asymp 
totic amplitudes and the phase shifts, the presence of the 
centrifugal and the long-range potentials, which fall off 
as T - ~ ,  make it necessary to extend the solution to 
infinity. This is undesirable because of the time con- 
sumption on the computer, and the accumulated errors 
due to the long-range integration. Seaton9 has solved 
the problem of T - ~  long-range potentials occuring in the 
off-diagonal elements of the potential matrix V by 
diagonalizing the asymptotic form of the differential 
equations (2.10) and the corresponding S matrix. By an 
inverse transformation the elements of the original S 
matrix are found. Burke, Schey, and Smith have used a 
different method.I0 

Instead, we develop here a perturbation theory which 
is based on the method described by Mott and Massey." 
The error in the resulting solution is inversely propor- 
tional to the square of the distance from the origin. 

Equation (2.10) for large distances of r can be written 

where U is the sum of the centrifugal potential matrix 
and the asymptotic form of the V matrix. The elements 
of u are given in Appendix 111. A component of Eq. 
(3.5) is of the following form: 

(3.6) 

g(r)<<k2u(r), g(r) + 0 as r -03. 

The perturbation theory is applied between some large 
distance R and infinity. Let u vanish a t  R; then we have 

M. J. Seaton, Proc. Phys. SOC. (London) 77, 174 (1961). 
lo  P. G. Burke and H. M. Schev, Phys. Rev. 126. 147 (1962); _ .  . 

see also Ref. 4(a). 
1". F. Mott and H. S. W. Masse)., The Theory of Atornu 

Collisions (Oxford Press, Oxford, England, 1949), 2nd ed., 
Chap. II. 
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the foiiowing boundary con& tion : 

u(R)=O. (3.7) 
If we represent the homogeneous solution of Eq. (3.6) 
by y(r ) ,  a t  infinity we must have 

y ( r ) = a  sin(kr-kkR) , 
u(r)= (a+Aa) sin(kr-kR+~), 

where a is the amplitude of u(r) if g(r) were identically 
zero and Aa and q are generated by g(r). Since g(r) is 
small, we can write 

where [ is a small function. Substitution of Eq. (3.9) in 

(3.8) 

u = r ( l + l >  , (3.9) 

where, upon double integration, we obtain 
rrdr rr 

I=/ -/ g(r')ydr'. 
R y2 R 

(3.11) 

The constants of integrations are fixed by the condition 
(3.7) and the fact that u'(R)=y'(R). 

We now integrate Eq. (3.11) by parts, 

s"= [ /d gmydr][  3 --l dr)Ydr*$ ; . (3.12) 

When the integration with respect to y is carried out, 
and the result is substituted in Eq. (3.9), we obtain 

u(r)=sin(kr-kkR) a+- g(r) cos(kr-kR)dr 1 [ i /Rr  

+cos(kr-kR) -- g(r)  sin(kr-kR)dr [ i/.Rr 

Comparison of the second of Eqs. (3.8) and Eq- (3.13) 
shows that 

9= -- g(r) sin(kr-kR)dr, 

to first order. The functions g(r) in the four differential 
equations (3.5) are given by 

gi(r)=2 C Ut3aj. (3.15) 

ak r R 

i 

To first order this can be written by 

gi(r) = 2 C ajUi, s L ( k p -  kjRj), (3.16) 

where Rj  is where uj has become zero for the last time 
with positive slope. Substitution of this equation in 

i 

Eq. (3.14) gives 

cos(ks-k;Ri)Ui, sin(k,r- kjRj)dr, 
i k; 

(3.17) 

Aai and 9; can easily be calculated by substituting the 
values of Uij from Appendix 111, integrating the result- 
ing integrals by parts and retaining the leading terms. 

The asymptotic amplitudes and phase shifts are 
given by 

ai( 00 ) = ai(Ri)+Aai , 
Si(..)=s. t (Ri) +tli+[L- 6(i,3)+ 6(i,4)]~/2 , 

(3.18) 

where ai(&) and 6i(Ri) are the amplitudes and total 
phase shifts calculated a t  R; by the machine, and where 
6( i ,3 )  and 6(i,4) are the 6 functions. 

C. Derivation of the Cross Section 

When contribution of the long-range potentials to 
the amplitudes and the phase shifts are added to these 
values calculated by the numerical integration, we find 
the asymptotic form of uij, 

u*j(r)-ui, sin ( ks--+&ij 'f ) . (3.19) 

The elements of the scattering matrix Smn are related to 
a;j and 6ij through linear relations.= The cross section 
for the In + n transition is then given by* 

7r(2L+ 1) 

km2(2J1+ 1) 
Qmn = l T m n 1 2 ,  (3.20) 

T m n =  6mn--Smn, (3.21) 

where k, is the wave nlunber in the initial channel m and 
ZI is the angular rxomentum quantum number of the 
atom in the initial state m. 

D. A Useful Relation 

A relation based on the symmetry of the interaction 
potentials, which serves as a test on the accuracy of the 
solutions, can be derived. The Zth and the kth solutions 
of the ith component of u by Eq. (2.10) are given by 

Multiplying the first by Uik and the second by uil, 

subtracting the two expressions, and summing over i 
12 See Ref. 6, Sec. ITB. See also Refs. 4. 



A975 z s  A N D  2 p  E L E C T R O N  I M P A C T  E X C I T A T I O N  I N  A T O M I C  H 

gives 

r d2 a2 1 

Since Vij= Vji, the interchange of the summation 
indices changes the sign on the right-hand side of the 
equation, the right-hand side must therefore be zero. 
By integrating the left-hand side from zero to infinity, 
we obtain 

By integrating the above equation by parts and apply- 
ing Eq. (3.19), we obtain 

4 

C klalkall  sin(6,k-&d=O, 
,=1 (3.25) 

k, 1=1, 2, 3, 4 ,  k f l .  

.4lthough the ternis containing the ex( hange potentials 
do not cancel out on the right-hand side of Eq. (3.23), 
the cancellation does take place after the integration 
is carried out in Eq. (3.24). 

E. Details of the Numerical Integration 

Milne’s13 method with variable mesh size and 
Simpson’s14 rule were used for the integration of the 
differential equations and evaluations of the integrals, 
respectively. A4s the solution advances from the origin, 
the differential equations become less sensitive to the 
size of the increment, and the error of integration falls 
below certain small number E. At each value of r the 
value of the function is found, first with the given value 
of the increment, and second with the value of the 
increment divided in half. The error of integration is 
defined as the difference between these two solutions. 
When the error becomes small, the increment is doubled 
until a maximum value is reached. At some distance R1 
all the exchange potentials and, similarly, all the direct 
potentials except those representing optically allowed 
transitions and the 2p -+ 2p elastic scattering potential 
become vanishingly small (see Appendix 111). At this 
distance the set of the differential equations is replaced 
by the simpler set containing only these potentials. The 
integration is continued until some distance R2, where 
the first-order solution of the rest of the range of inte- 
gration is obtained by the method developed in Sec. 
IIIB. No attempt was made to solve any set of linear 
equations or any matrix equations, as these equations 
are solvable by the computer in their original form. 

The values of the constants of the numerical integra- 
tion are given below; lis and h, are the initial and the 

l a  W. E. klilne. Nuinerical CuZczJus Il’rinceton Universitv 
Press, Princeton, New Jersey, 1949), Sec. 40. 

‘4 See lief. 13, Sec. 33. 

final increment of integration. In  some exceptional cases, 
different values were used. 

hi = 1x 10-5, 

E=1~10-4,  
hf= 0.05 , 

R1=30, 
Rz= 200. 

All quantities are in units of Bohr radius except E, which 
is dimensionless. 

IV. RESULTS AND DISCUSSION 

The four differential equations listed in Appendix I 
were integrated numerically by the methods described 
in Sec. 111. By choosing different values for the deter- 
minant (3.4) different sets of independent solutions can 
be generated. The cross sections reported in this paper 
have been obtained by averaging the cross sections 
obtained from two independent sets of solutions. To test 
the accuracy of the numerical integration we define the 
three quantities D,,, Dmn‘ and D,“ given by 

4 

Dmn= 1 C kzaimain Sin(&,- 6 i n )  1 / 
i=l 

4 

C kiaiw‘ain I sin(&*- 6 i n )  I , 
i=l 

m, n = l ,  2, 3, 4 ,  m # n ,  (4.1) 

4 4 

lSrnnI2-1l/C I S m n 1 2 + 1 ,  
n=l  n=l  

m = l ,  2, 3, 4. (4.3) 

Based on Eqs. (3.25), the symmetry, and the unitary 
property of the S matrix, in an exact solution of the four 
differential equations the right-hand side of these 
equations would vanish; they can therefore be used to 
test the accuracy of the numerical integration. As an 
illustration the numerical values of D,,, D,,’, and D,” 
for the case of ls-2s-2p coupling, ,B=+l, k l=  2.0, and 
L= 3 are given below : 

Diz= 1.4X DI3=2.6X lop4, D14= 1.3X 1W3, 
D23=5.1X10-4, D2,=2.2X10-3, D34= 1.8x10-3, 

D1z’=7.6X10-4, D1~=5.1X10-3, D14’=5.6X10-3, 
D23t=5.4X10-3, &’=5.7X10-3, D34’= 1.3XlOW, 

D1”= 1.8X10-4, D Z ’ ’ = ~ . ~ X ~ O - ~ ,  
D3”=2.5X10-4, D4t‘=4.4X10-6. 

To compare the results of the numerical integration 
by noniterative method as we have carried out here 
with those of iterative method of Refs. 2 and 4 we have 
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TABLE L Comparison of the iterative and the noniterative re- 
SI;!% for & singlet, L=O, 1; k1=0.9, 1.0, 1s -+ 2s excitation cross 
section. I and I1 refer to interative and Ilui&eiati\-e ~ e t h o d s ,  
respectively. D,, is the maximum of the error to value ratios in 
the reciprocity relationships. 

A. 1s-2s coupling 
Qls-28 D, (percent) 

h L 1. I1 I I1 
0.90 0 0.0384 0.0375 7.1 0.72 
1 .oo 0 0.0714 0.0725 unknown 0.53 
0.90 1 0.008 0.0017 386 0.91 
1 .oo 1 0.051 0.0583 55 0.75 

B. ls-2s-2P COUplhg 

I b  I1 I I1 
Q1-t .  D ,  (percent) 

0.90 0 0.0529 0.523 0.40 0.40 
1 .oo 0 0.0766 0.0768 0.12 0.60 
0.90 1 0.0045 0.0048 2.3 10 
1 .oo 1 0.0145 0.0147 0.33 1.3 

See Ref. 2. 
b S e e  Refs. 4(a). 4(b). 

provided Table I.15 The 1s + 2s excitation cross section 
is given by the two methods. Methods I and I1 refer 
to the iterative and noniterative methods, respectively, 
and D,, is the maximum of the error to value ratios in 
the reciprocity relations (4.2). In  the 1s-2s eigenstates 
coupling approximation the noniterative method is far 
more accurate than the iterative method, and as is seen 
the cross sections by the two methods differ from each 
other sometimes in their first significant figure. In the 
1s-2s-2p eigenstates coupling approximation, on the 
other hand, the results by the iterative method seems 
to be somewhat more accurate. The reason is contri- 

f0.5 

5 0.4 

0.3 
0 

0.2 I! 0. OO I 

1 
3 

15-2s-2p 
EX. NEGL. 

IO 15 20 25 30 35 40 45 50 ! 

ELECTRON ENERGY (OW 

FIG. 1. 1s -+ 2s total excitation cross section. 15-2s refers to 
15-2s eigenstates coupling approximation. ls-2s-2p has similar 
meaning. EX. NEGL. refers to exchange neglected case. BORN is 
the Born approximation. ESP. refers to experiment. 

I am indebted to Dr. I<. Smith for sending me some of the 
data in this table. 

buted to the effect of the r2 long-range potential which 
appear in the differential equations when in the eigen- 
states coupling approximaiioii thc 2yh s k t e  is Included. 
Two different methods are used in Refs. 4 and the 
present paper to estimate the effect of this potential for 
large distances, and it may be that in Refs. 4 this effect 
is better accounted for. Nevertheless the cross sections 
are the same in their first three decimal places. 

In  Fig. 1 we present the theoretical and the experi- 
mental estimate of the 1s -+ 2s excitation cross section. 
The calculated curves are Born, 1s-2s coupling, 
1s - 2s- 2p coupliig exchange neglected, and 1s- 2s- 2p 
coupling exchange included, approximation. The first 
three of these curves are the same as Refs. 4(a) and 
4(b). The experimental curves are those of Lichten and 
Schultz,16 and Stebbings, Fite, and Hummer." The 
various calculated results agrees better with the results 
of Lichten and Schultz. However, recent calculations of 
Taylor and Burke1* have shown that, in an eigenstates 
expansion calculation where Is, 2s, 2p,  3s, and 3p are 
included, the cross section a t  the peak of the 1s- 2s- 2p 
curve is reduced by 30%. This suggests that, within 
eigenstates expansion approximation, more states 
should be included to insure that the convergence has 
been achieved ; and the discrepancy between the two 
experimental results is still an unresolved problem. As 
another theoretical approach to the problem, H. L. Kyle 
and A. Temkinlg have extended the nonadiabatic theory 
of scattering developed by A. TemkinZ0 to the L=O, 
1s --+ 2s inelastic scattering of electrons by the hydrogen 
atom. They find a 30% decrease in the 1s + 2s cross 
section as calculated by the 1s-2s close coupling 
approximation. 

Comparison of the exchange neglected and exchange 
included 1s- 2s- 2p coupling shows that exchange is 
mostly important a t  threshold, and its effect does not 
extend beyond 20 eV. 

The 1s + 2s excitation cross section in the singlet 
state has an interesting behavior immediately above 
threshold. In  Fig. 2 this cross section for a range of 600 
meV above threshold is plotted. In the 1s- 2s coupling 
approximation a maximum appears a t  34 meV while in 
the ls-2s-2p coupling approximation there are three 
maxima of approximately the same magnitudes a t  17, 
34, and 87 meV, respectively. In the singlet case the 
cross section rises sharply within a range of 17 meV 
above threshold to a value of about 0.04mo2. It then 
rises with an approximately constant and small slope. 
The contribution of the triplet case is seen to be almost 

l6 W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959). 
R. F. Stebbings, Wade L. Fite, David G. Hummer, and R. T. 

Brackmann, Phys. Rev. 119, 1939 (1960). 
A. J. Taylor and P. G. Burke, in Bulletin of the Third Inter- 

national Conference on the Physics of Electronic and Atomic Colli- 
sions, University College, London, July 1963 (unpublished). 

l9 H. L. Kyle and A. Temkin, in Bulletin of the Third lnter- 
national Conference on the Physics of Electronic and Atomic Colli- 
sions, University College, London, July 1963 (unpublished). 

eo A. Temkin, Phys. Rev. 126, 130 (1962). 
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I S - 2 5 - 2 P  S I N G L E I  
0.051 I 

- 
FIG. 2. L=O, I s - 2 ~  excitation 

cross section above threshold. The 
cross sections are given for the two 
spin states singlet and triplet, and for 
the two approximations 1s-2s and 
ls-2s-2p. The total cross section is 
the sum of the singlet and the triplet 
cross sections. 
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negligible a t  the threshold, and i t  has no maximum in 
this region (see Table 11). It should be noted that the 
principal maximum in the Is --f 2s excitation cross sec- 
tion appears a t  about 3 eV with a value of about 0.35, 
and has contribution from higher angular momentum 
than L=O. Although no study has been made to re- 
late the existence of the maxima above threshold to 
any physical phenomena, it may be said that, similar to 
resonances below threshold in the elastic scattering of 
electrons by the hydrogen atom, these maxima are due 
to formation of some unstable states of the negative 
hydrogen ion. Damburg and P e t e r k ~ p , ~  and Gailitis and 
DamburgZ1 have made an extensive study of the be- 
havior of different cross sections near threshold in the 
Is-- 2s, and the Is- 2s-2p eigenstates coupling 

In Fig. 3 we have shown the 2s + 2s elastic cross 

0 5 IO I5 20 
ELECTRON ENERGY (OW approximations. 

FIG. 3. 2s + 2s total elastic cross section. Curves 
are designated as in Fig. 1 .  

FIG. 4. L=O, 2s + 2s elastic cross 
section. Curves are designated as in 
Fig. 2. 
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I I . I .  I I I , *  , , , , !  , , , , , , , , , ,  
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. 
0.001 0.01 0.1 I 10 100 

0.011 , . . I . . I  I , , , L  % , , , ,  , , , , ,  , 

LLEClRON ENERGY (.VI 

*I M. Gailitis and R. Damburg, I'roc. Phys. Sac. (London) 82, 192 (1963). [&Vote added in pyoof: When the energy difference be- 
tween the 2s and the 2p states are neglected in the ls-2s-2p couplings, Gailitis and Damburg have shown that at the threshold 
the 1s -t 2s excitation cross section does not go to zero (cf. Fig. 2).] 

~ 
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TABLE II. The singlet L=O, 1s + 2s excitation cross section near threshold. k2 is the wave number of the inelastically scattered wave, 
2nd E h the corresponding energy in meV. QI and QZ are the cross sections according to the 1s-2s and the ls-2s-2p couplings, 
respectively. 

- 

k, 0 0.01 0.02 0.02.5 O.O.?O 0 0.35 no5 _._ - 
E (mev) 0 1.36 5.44 8.50 12.2- - 16.7 21.8 

0 0.0168 0.0298 0.0377 0.0123 
Qz 0 0.0149 0.0259 0.0349 0.0405 0.0353 
QI 

kz 0.045 0.050 0.060 0.070 0.080 0.090 0.100 

Q1 

QZ 

E (me\’) 27.5 34.0 49.0 66.6 87.0 110 136 
0.0446 0.0141 0.0435 0.0423 0.0412 0.0205 

0.0346 0.0205 0.0391 0.0361 0.0395 0.0392 0.0385 

TABLE III. 2p-2p elastic cross sections. 

kz A. L-21-12 odd, Born approximation 

0.24 
0.50 
0.68 
0.83 
1.23 
1 .so 
2.87 

L= 1 L = 2  L = 3  
26.562 6.1961 2.1260 
14.210 5.2190 2.1768 
8.8346 4.0761 1.9476 
6.0065 3.2062 1.6993 
2.5053 1.7028 1.1013 
0.91169 0.74615 0.56949 
0.23647 0225.17 0.20035 

. L = 4  
0.92680 
1.0526 
1.0100 
0.94122 
0.70920 
0.42475 
0.17 178 

L = 5  
0.44497 
0.55433 
0.54983 
0.53201 
0.44518 
0.30158 
0.13878 

0.24 
0.50 
0.68 
0.83 
1.23 
1 .so 
2.87 

L=6  L=7 
0.22694 0.08105 
0.31476 0.18383 
0.31728 0.1 87 18 
0.31331 0.18680 
0.28212 0.17577 
0.21122 0.14215 
0.10926 0.08177 

.~ 

ZO 
36.56 
23.71 
16.923 
12.8854 
6.9237 
3.30733 
1.16488 

- 
B. L-ZL-12 odd, exchange neglected 2p eigenstates couplings approximations 

L = l  L=2 L=3  L=4 L=S L = 6  L= 7 ZO 
61.12 8.444 2.5808 1.1408 0.6200 0.3720 0.2516 74.52 
15.292 6.884 2.5436 1.1580 0.6216 0.3640 0.2352 27.10 
8.008 4.940 2.2548 1.1160 0.6160 0.3640 0.2352 17.54 
5.108 3.6364 1.9292 1.0380 0.5968 0.3592 0.2340 12.90 
2.0484 1.7392 1.1812 0.7652 0.4972 0.3236 0.2208 6.776 
0.7640 0.7220 0.5816 0.4436 0.3312 0.2500 0.1784 3.261 
0.2132 0.2180 0.2004 0.1776 0.1520 0.1272 0.1064 1.195 

C. L-21-12 odd, 2p eigenstates couplings approximation 

Singlet 
L = l  L=2 L = 3  L=4 L=5  L = 6  L=7 Zos 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 

2.963 
3.735 
2.165 
1.371 
0.5280 
0.1928 
0.0534 

L = l  

7.791 
4.720 
3.373 
1.484 
0.5674 
0.1596 

49.22 

4.161 
3.182 
1.728 
1.107 
0.4603 
0.1831 
0.0547 

L=2 
3.265 
1.851 
2.219 
2.099 
1.225 
0.5337 
0.1632 

0.6725 
0.7915 
0.6851 
0.5562 
0.3115 
0.1475 
0.0503 

L = 3  
1.850 
1.504 
1.361 
1.237 
0.8376 
0.4295 
0.1500 

0.2861 0.1552 
0.3066 0.1576 
0.3025 0.1587 
0.2799 0.1547 
0.1991 0.1277 
0.1124 0.0837 
0.0445 0.0381 

Triplet 
L=4  L=5  

0.8528 0.4650 
0.8193 0.4598 
0.7700 0.4.181 
0.7198 0.4318 
0.5509 0.3630 
0.3283 0.2456 
0.1328 0.1136 

0.0930 
0.0913 
0.0920 
0.0913 

0.0605 
0.0319 

0.0823 

L = 6  
0.2788 
0.2722 
0.2700 
0.2652 
0.2384 
0.1784 
0.0951 

0.0629 
0.0589 
0.0390 
0.0589 
0.0558 
0.0449 
0.0267 

L=7 
0.1886 
0.1764 
0.1756 
0.1744 
0.1639 
0.1330 
0.0797 

8.394 
8.323 
5.190 
3.619 
1.7647 
0.8249 
0.2996 

ZOT 
56.12 
12.87 
9.964 
8.300 
4.863 
2.4159 
0.8940 

D. L-Z1-Z2 even, Born approximation 

L=O L= 1 L=2 L = 3  L=4 L=5 L = 6  L = 7  Z E  QT 
0.24 12.488 230.42 4.0127 1.9014 0.30797 0.57480 0.29675 0.06128 250.09 290.69 
0.50 0.1758 74.475 7.0963 0.92172 0.48094 0.45745 0.30098 0.05695 83.965 109.714 
0.68 0.07386 36.478 6.5573 1.0156 0.29902 0.27895 0.23113 0.W36-i 44.978 63.742 
0.83 0.22032 21.559 5.4143 1.1653 0.26124 0.15835 0.15225 0.02533 28.956 43.572 
1.23 0.25024 7.3349 2.9703 1.1453 0.37i50 0.1 1091 0.01377 0.03572 12.269 20.571 
1 .so 0.13477 2.3518 1.3155 0.74676 0.39290 0.38754 0.07731 0.02824 5.2348 9.6066 
2.87 0.04395 0.55809 0.40.143 0.30267 0.21866 0.15188 0.09753 0.05832 1.8355 3.8272 
3.91 0.01868 0.20876 0.17048 0.14307 0.11656 0.09255 0.06896 0.04864 0.8677 2.1455 
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TABLE III-(continued) 

E. L-11-Z2 even, exchange neglected ls-2s-2p eigenstates couplings approximation 

L=O L= 1 L=2  L = 3  L = 4  L=5  L = 6  L=7  Z E  QT 
0.24 31.96 91.21 154.6 92.86 55.86 36.79 24.37 
0.50 9.371 12.65 30.88 20.53 12.99 8.451 5.695 
0.68 4.156 5.953 13.19 9.628 6.563 4.508 3.130 
0.83 2.542 4.560 7.424 5.249 3.811 2.793 2.032 
1.23 1.208 2.879 2.906 1.734 1.106 0.8438 0.6912 
1.80 0.5612 1.385 1.238 0.8299 0.5109 0.3005 0.2022 

487.7 566.32 
100.6 129.8 
47.13 66.56 
28.41 43.07 
11.37 19.56 
5.028 9.382 

F. L-Z1-Z2 even, 1s-2p eigenstates couplings approximation 

Singlet 
L=O L= 1 L=2 L = 3  L = 4  L = 5  L=6 L=7  Z E S  

0.24 1.964 5.238 17.34 1.260 0.4896 0.2460 . _ -  _. - . .. 

0.50 0.5131 3.159 1.544 1.439 0.4063 0.1906 0.1133 
0.68 0.2346 2.091 1.039 0.4944 0.2539 0.1520 0.0984 
0.83 0.1227 1.252 0.9930 0.1532 0.1191 0.0990 0.0766 
1.23 0.107 1 0.6796 0.6167 0.2249 0.0635 0.0249 0.0217 
1.80 0.0571 0.3366 0.2926 0.1818 0.0954 0.0426 0.0172 

26.54 
7.365 
4.363 
2.816 
1.7384 
1.0233 

Triplet 
L=O L =  1 L=2 L = 3  L = 4  L=5  L=6  L=7  ZET Qr 

0.24 15.62 26.72 32.44 6.674 1.252 0.7359 
0.50 4.844 3.384 19.97 12.52 0.8285 0.3266 0.2754 
0.68 2.247 3.886 10.33 5.922 1.035 0.2270 0.1764 
0.83 1.293 3.650 6.287 3.476 0.9248 0.2097 0.1162 
1.23 0.4842 2.287 2.424 1.418 0.6072 0.2079 0.0717 
1.80 0.1909 1.063 0.9673 0.6659 0.4001 0.2024 0.0962 

83.44 178.89 
42.15 72.80 
23.82 45.22 
15.957 32.45 
7.500 17.28 
3.586 8.943 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 

L=O 
7.852 
2.470 
1.344 
0.7424 
0.2813 
0.1357 
0.0513 
0.0267 

L=O 

4.337 
2.823 
2.032 
0.9741 
0.4291 
0.1564 
0.0805 

27.90 

G. L-Zl-Z2 even, 1s-2s-2p eigenstates couplings approximation 

Singlet 
L =  1 L=2  L = 3  L = 4  L=5  L=6  L = 7  

13.45 38.56 21.41 15.44 8.610 6.432 
s 026 7.433 4.900 3.201 2.101 1.417 

-- 

. . 

2.283 3.025 2.683 i.756 1.166 0.7903 
1.316 1.579 1.518 1.079 0.7580 0.5313 
0.6752 0.6254 0.3663 0.2726 0.2289 0.1916 
0.3339 0.2862 0.1816 0.1065 0.0659 0.0471 0.0383 
0.1053 0.0930 0.0739 0.0553 0.0391 0.0268 0.0181 
0.0451 0.0422 0.0373 0.0318 0.0261 0.0212 0.0166 

Triplet 
L =  1 L=2  L=3  L=4  L=5  L = 6  L=7  

75.79 63.10 87.21 41.31 26.12 17.13 
4.540 20.66 21.62 10.38 6.373 4.255 
4.018 10.75 8.986 5.149 3.337 2.302 
3.674 6.400 4.796 2.950 2.013 1.468 
2.290 2.465 1.599 0.9568 0.6421 0.4924 
1.055 0.9303 0.6614 0.4150 0.2540 0.1639 0.1180 
0.3217 0.2907 0.2330 0.1780 0.1291 0.0907 0.0623 
0.1366 0.1285 0.1143 0.0982 0.0810 0.0655 0.0524 

Z E S  

111.75 
26.548 
13.047 
7.524 
2.641 
1.1952 
0.4628 
0.2470 

Z m  QT 

338.56 518.92 
72.17 122.01 
37.37 67.46 
23.333 44.54 
9.419 20.11 
4.027 9.531 
1.4619 3.945 
0.7570 

section. The 1s- 2s coupling approximation gives a 
value of 944aaa a t  zero-incident energy, while the 
corresponding value in the Born approximation is 
7 8 6 ~ ~ 0 ~ .  The high value of this cross section a t  zero 
energy is in sharp contrast with its geometrical cross 
section. The zero energy 2s -+ 2s cross section in the 
1s- 2s- 2 p  coupling approximation, because of the rP2 
potential, is difficult to find. The 2s -+ 2s cross section 
has certain maxima and minima at  low energy which is 
not found in the 1s + 1s cross section. Figure 4 shows 
the L= 0, singlet and triplet 2s + 2s cross section in the 
two approximations. While there is one minimum in the 
1s- 2s coupling approximation there are three minima 
in the 1s- 2s- 2 p  coupling approximation. I t  is thought 
that the existence of these minima is due to a wider 

1.6 

w 

0 
5 0.4 

0.2 

ELECTRON ENERGY (eV1 

FIG. 5. 1s -+ 2p total excitation cross section. 1s-2p refers to 
1s-2p eigenstates coupling approximation. ls-2s-2p has similar 
meaning. EX. NEGL. refers to exchange neglected case. BORN is 
the Born approximation. EXP. refers to experiment. 
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'TABLE IV. 2s-2p excitation cross sections. 

k g  A. Born alJpi0Xiiiia;ioE 

L=O L = l  L=2 L = 3  L=4  
0.245 210.45 465.14 449.77 343.68 148.60 
0.500 6.2469 30.729 57.561 64.948 54.469 
0.678 0.92003 6.6619 16.736 24.356 25.702 
0.831 0.24580 2.1480 6.4066 11.011 13.641 
1.225 0.02039 0.20887 0.78437 1.7481 2.7859 
1.803 0.00187 0.01900 0.07823 0.20201 0.38645 
2.872 0.00011 0.00107 0.00444 0.01211 0.02545 
3.905 O.ooOo2 0.00017 0.00067 0.00182 0.00389 

L = 5  

49.590 
24.598 
14.135 
3.6015 
0.59807 
0.04450 
0.00699 

209.74 
L=6  2: 

158.31 1985.69 
40.391 303.935 
21.122 120.096 
12.973 60.560 
3.9501 13.099 
0.78354 2.0692 
0.06688 0.15456 
0.01096 0.02452 

QT" 

3465.0 
1930.9 
1308.4 

13560 

620.51 
294.95 
120.26 
66.509 

~~~ 

B. Exchange neglected ls-2s-2p eigenstates couplings approximation 

L=O L= 1 L=2 L=3 L=4  L=5 L=6  z QT 
n 345 5..31 1 12.59 23-21 41.11 12476 _ _  ..___ - 
0.500 0.8651 i0.55 1.143 18.92 26.25 57.73 3308.8 
0.678 1.150 5.907 0.5760 7.168 12.28 14.46 15.08 56.62 1867.4 
0.83 1 1.249 2.859 0.3831 3.158 6.664 8.591 9.391 32.295 1280.1 
1.225 0,3847 0.4266 0.0881 0.4560 1.403 2.328 3.022 8.108 615.52 
1.803 0.0654 0.0516 0.0142 0.0553 0.1846 0.3930 0.6183 1.3824 294.26 

C. ls-2s-2p eigenstates couplings approximation 
~~~~ ~ 

Singlet 
L=O L = l  L=2 L=3  L=4  L = 5  L=6  2 s  

0.245 2.243 4.424 3.276 9.943 
0.500 0.1241 1.605 1.348 6.360 7.159 16.596 
0.678 0.0362 1.446 0.5518 3.056 3.693 3.91 1 12.594 
0.831 0.1866 0.9881 0.2615 1.488 2.144 2.433 2.505 10.006 
1.225 0.1048 0.1516 0.0384 0.1639 0.4584 0.7031 0.8529 2.473 
1.803 0.0175 0.0157 0.0046 0.0148 0.0530 0.1108 0.1726 0.3890 
2.872 0.0014 0.0010 O.OOO4 0.0010 0.0032 0.0075 0.0133 0.0278 
3.905 0.0002 0.0002 0.0001 0.0002 O.OOO.5 0.0012 0.0019 0.0043 

Triplet 
L=O L= 1 L=2 L=3  L = 4  L=5  L=6  Z T  z S + z T  QT 

0.245 0 . m  10.40 56.74 67.14 77.083 12512 
0.500 2.322 7.125 2.357 3.838 17.01 32.652 49.248 3300.3 
0.678 1.590 2.363 0.3333 1.442 6.810 9.868 22.406 35.100 1867.0 
0.831 0.9885 1.125 0.1226 0.8444 3.411 5.518 6.556 18.566 28.572 1276.4 
1.225 0.2648 0.2173 0.0402 0.2297 0.7623 1.423 1.987 4.924 7.397 614.8 
1.803 0.0455 0.0310 0.0094 0.0383 0.1223 0.2544 0.4070 0.9079 1.297 294.18 
2.872 0.0040 0.0024 O.OOO9 0.0031 0.0095 0.0208 0.0359 0.0766 0.1044 120.21 
3.905 0.0007 0.0004 0.0002 0.0005 0.0015 0.0035 0.0063 0.0131 0.0174 66.520 

6 
++Inn. 4 =1+4kI (Ref. 24). 72 

ktr 'Or=-[14.8451 -p+InkP]. p 

potential range in the 2s -+ 2s scattering, a case which 
does not exist in the 1s -+ 1s 

In Fig. 5 the four calculated curves for the 1s -+ 2p 
excitation cross section are compared with the measure- 
ment of Fite, Stebbings, and Brackmann.nsw The 
ls-2s-2p and the Born curves are the same as in 
Refs. 4(a), 4(b), but the ls-2s-2p exchange neglected, 
and the 1s-2p curves are not calculated in these 
references. As concluded before, the calculated curves 
are higher than the experimental. Moreover, we notice 

p1ah7~fe added in prooJ. Figures 2 and 4 show that in the 1s-2s 
-2p couplings if E,,-l and E,  represent the energy with respect to 
the threshold of the two neighboring maxima or minima then 
E,/E,_l~const. This may be attributed to the r3 potential which 
is due to the coupling between the 2s and the 2p states. For further 
details see Ref. 21. 

91 W. L. Fite and R. T. Brackmann. Phvs. Rev. 112.1151 (1958). 
21 W. L. Fite, R. F. Sebhings, and R. T .  Brackmann, Phy;. Rev. 

116, 356 (1959). 

that, similar to the Is 3 2s excitation cross section, the 
inclusion of the exchange lowers the value of the cross 
section at threshold. 

The calculation of the 2 p  -+ 2 p  elastic cross section is 
more complicated than the cases so far considered. For 
a given total angular momentum L, the angular 
momentum of the partial wave which is scattered from 
the 2 p  state may be L-1, L ,  and L+1. The first and 
the third values correspond to a wave function which 
has the same parity as the wave functions in the 1s and 
the 2s channels. In  this case L--l1-& is even. The 
second value corresponds to a wave function with a dif- 
ferent parity, and the only process that occurs with this 
parity is the 2 p  elastic scattering. In  this case L-11-12 is 
odd. We have calculated the 2 p  --f 2 p  cross sections for 
the two cases, and they are listed in Table 111. The 
total cross section is shown in Fig. 6. Because of the c2 
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potential it is difficult to find the zero energy value of 
this cross section. 

The 2s + 2p transition cross section has application 
in some plasma, and stellar atmosphere, calculations. 
The total cross section using the Born approximation is 
given by Seat0n.2~ In  Table IV we list the partial cross 
section using the close couplings approximation. This 
table may be found useful in problems in which plasma 
shielding occurs ; where only electrons with an impact 
parameter within a given range can induce the 2s -+ 2P 
transition. 

It may be noted that the cross sections for the inverse 
processes 2s -+ Is, 2p --+ Is, and 2p -+ 2s may be cal- 
culated by Eq. (3.20) and the symmetry of the T 
matrix. 

Tables for the processes 1s -+ Is, 1s --+ 2s, 1s + 2p, 
and 2s 3 2s will not be given here as the most important 
cases have been reported by Burke, Schey, and 
Smith.4(a)(b) These tables in various approximations are 
given in Ref. 6. 

In all tables listed here k l  is the wave number in the 
Is, and kz is the wave number in the 2s or the 2p chan- 
nels. The energy, in electron volts, of the incident elec- 
tron in each channel is given by E=13.6k2, where k 
could be k l  or kz. All cross sections are in units of aao2. 
In  Tables I11 and IV, is the sum of the partial cross 
sections calculated. The total cross section QT is ob- 
tained by adding the contribution of higher partial 
waves than those calculated using the regular Born ap- 
proximation. This could easily be done with the help of 
the table of the Born approximation. 

V. CONCLUSION 

The noniterative technique employed here can be 
applied to a large class of problems containing exchange 
integrals. The method is particularly useful when ex- 

600, 

- 400 

15-25-2p 
EX. NEGL. 

N O  - 5 
z 

w Y) 

ELECTRON ENERGY (ev) 

FIG. 6. 2 p  4 2 p  total elastic cross sections. Curves are desig- 
nated as in Fig. 5. The cross section at zero energy is finite but is 
not found here. 

change potential is comparable to direct potential, in 
which case the convergence of iteration is slow. 
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APPENDIX I: ELEMENTS OF THE POTENTIAL MATRIX 

(i) L-ll-12 Even 
Elements of Dij 

/1 3 r r2\ 
DZ2= -(-+-+-+- 

7 4 4 8  

__ 1 3 7 . 7 2  6(L-l)  1 1 1 1 1 r 

7 4 4 2 4  2L+ 1 
-+-+-+-]e-r+----[ r3 ( 7 3  r2 2r 6 24 144 

1 1 1 1 1 r 
-- -+-+-+-+-+- e-r 

[r3 ( 7 3  r2 2r 6 24 144 

24 M. J. Seaton, Proc. Phys. SOC. (London) A68, 457 (1955). 
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1 2 8 a  L+l 1 
D14=D41= --(--> 243 2L+1 [;-($+?+!+E)e-3r/zl, 2r 8 64 

DZa=Daz= 
2L+ 1 

L+l 1 1 1 1 r "> ] D24=D42=3(-) -- -+-+-+-+- e-? 

D34=D43= -18[ 

[, ( rz r 2 6 24 
9 

2L+ 1 

Elements of Fi, 

L 

(2L+ 1)  (2L- 1 ) Z  
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F42= F24LRZO * RZI]  7 

Elements of gij and hij 

P R lor L+ 

2L+ 1 

PRZOrH1 

2L+1 

g11=- 1 

gzz=-, 

3PRzlr L+ 

g33l= 

g332=  

(2L- 1 )  (2L+ 1 ) 2  

3P(L- l)RzlrG1 

(2L- 1 )  (2L-3) ' 

3PR2 lr L+ 

g 4 4 I =  

g442= 

(2L+3) (2L+1)* ' 

3P (L+ 2 )  Rzlr L+3 

(2L+3)(2L+5) ' 
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(ii) L-11-12 Odd 

1 1 P+kz2 
, h5S1=R21 ---8(L,l)r , 1I rG1 2 

3bRzirL 
g s d =  - 

(2L+1)(2L-l) 

3/3RgllGt2 Rsi 
gss2 = kssf=- . 

(2L+1)(2L+3) ' 
In  F;j matrix the interchange of the functions RIO, ROO, and Rzl accompanies the interchange of their argu- 

ments too. 

APPENDIX XI: SINGULARITY OF THE DETERMINANT OF EQ. (2.17) FOR Z=O AND 1 

(i) L = 0 Case 

By making use of the definition of Dij and Fij and Eq. (2.18), the following relation can be derived 
from Eq. (2.14): 

where the superscript p is suppressed when there is only one value for p and 

ala= RI&Iradr= [216X3-9]1'2, lrn 
l a21= R2aR21r3dr= - 3 s .  

Integrating the left-hand side of Eq. (11.1) by parts, and making use of Eqs. (2.11) and (2.18), we obtain 

We conclude that 
1 

G 
B21-bB12= -[al&4-ba23B14]. 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

Equation (11.5) connects the right-hand sides of four equations of Eqs. (2.17) specified by ij=21, 12, 24, 14. 
A similar relation should hold among the left-hand sides of these equations. This in fact is the case and by making 
use of the first of Eqs. (2.18) it can be shown directly that equations similar to Eq. (11.5) hold among the elements 
of each column klv of the left-hand sides of Eqs. (2.17) specified by ij= 21, 12, 24, 14. We conclude that one of the 
Eqs. (2.17) is linearly dependent on others and the determinant of Eqs. (2.17) is singular. 

(ii) L =  1 Case 

Similar to the previous case, the following relation can be derived from Eqs. (2.14) : 
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where 

(11.7) .-- 
Integrating the left-hand side of Eq. (11.6) by parts, and making use of Eqs. (2.11) and (2.18), we obtain 

[ [ r R 2 1 ( G + k 1 2 - ! - T )  r2 mr,-PrRlo ' .1 .' (:2 -+kz2 ) v3 ] dr= -2[B31-/3B13]. (11.8) 

Combining Eqs. (11.6) and (11.8), we get 

Finally, Eqs. (2.14) give the following relation: 

Integration by parts of the left-hand side gives as before 

(11.11) 

whereupon we get 
B32-/3B23= 4[/3~2~B~2+/3~13&1- ~ 2 3 & 3 ~ + ~ ( ~ 2 3 B 3 ~ -  $/3a33B24)1. (11.12) 

Similar to the case L=O, Eqs. (11.9, 12) indicate that two of the Eqs. (2.17) are linearly dependent on others and 
the determinant of Eqs. (2.17) is singular. 

To remove the singularity in L=O case, one of the C d  is chosen arbitrarily, and a degenerate equation is removed 
from Eqs. (2.17). Similarly, in the L= 1 case two of the CklY are chosen arbitrarily and two degenerate equations 
are removed from Eqs. (2.17). 

APPENDIX 111: ELEMENTS OF THE MATRIX OF THE SUM OF THE ASYMPTOTIC COULOMB 

U11=L(L+l)r-2, 
u33= ( L -  1)1,-~+12(~-  1)(2~+1)-'r-3, 

U12= U Z I =  0 ,  
U14= UJ1 = - [ 2566  /2it3][ (L+ l)/' (2 L+ 1)]1/2r-2 , 
U24= U42=6[(L+1)/(2L+1)]112r-2, 

AND CENTRIFUGAL POTENTIALS 

UZ2= L (L+ 1). - 2 ,  

Ud4= (L+1)(L+2)r-2+12(L+2)(2L+1)-1r-3, 
U13= u31= [256d2/243][L/(2L+ 1)]"'r-" 

U23 = u32= - 6[L/ (2 L+ 1)]1/2r-2 , 
U34= U43= - 36[L(L+ 1)]1/2(2L+ 1)-w3.  


